Extensions of isomorphisms for affine Grassmannians over F2
نویسندگان
چکیده
In Blok [1] affinely rigid classes of geometries were studied. These are classes B of geometries with the following property: Given any two geometries Γ1,Γ2 ∈ B with subspaces S1 and S2 respectively, then any isomorphism Γ1 −S1 −→ Γ2 −S2 uniquely extends to an isomorphism Γ1 −→ Γ2. Suppose Γ belongs to an affinely rigid class. Then it follows that for any subspace S we have Aut(Γ − S) ≤ Aut(Γ). Suppose that, in addition, Γ is embedded into the projective space P(V ) for some vector space V . Then one may think of V as a “natural” embedding if every automorphism of Γ is induced by some (semi-) linear automorphism of V . This is for instance true of the projective geometry Γ = P(V ) itself by the fundamental theorem of projective geometry. Clearly since Γ belongs to an affinely rigid class and has a natural embedding into P(V ), also the embedding Γ− S into P(V ) is natural. In Blok [1] the notion of a Layer-Extendable class was introduced and it was shown that Layer-Extendable classes are affinely rigid. As an application, it was shown that the union of most projective geometries, (dual) polar spaces, and strong parapolar spaces forms an affinely rigid class. However, the geometries motivating that study, the Grassmannians defined over F2, were not included in this class because they do not form a layer-extendable class. Since affine projective geometries (1-Grassmannians, if you will) are simply complete graphs, clearly they are not affinely rigid at all. In the present note we show that also the class of 2-Grassmannians over F2 fails to form an affinely rigid class, although in a less dramatic way, whereas the class of k-Grassmannians of projective spaces of dimension n over F2 where 3 ≤ k ≤ n− 2 is in fact affinely rigid.
منابع مشابه
International Conference on Incidence Geometry
1. Kristina Altmann, Hyperbolic lines in unitary space. 2. John Bamberg, Transitive m-systems. 3. Barbara Baumeister, The primitive permutation groups with a regular subgroup. 4. Rieuwert Blok, Extensions of isomorphisms for affine grassmannians over F2. 5. Matthew Brown, Tetradic sets of elliptic quadrics of PG(3, q) and generalized quadrangles of order (s, s2) with Property (G). 6. Julia Brow...
متن کاملExtensions of isomorphisms for a ‰ ne Grassmannians over F 2
In Blok [1] a‰nely rigid classes of geometries were studied. These are classes B of geometries with the following property: Given any two geometries G1;G2 A B with subspaces S1 and S2 respectively, then any isomorphism G1 S1 ! G2 S2 uniquely extends to an isomorphism G1 ! G2. Suppose G belongs to an a‰nely rigid class. Then for any subspace S we have AutðG SÞcAutðGÞ. Suppose that, in addition, ...
متن کاملOn Quiver Varieties and Affine Grassmannians of Type A
We construct Nakajima’s quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framewo...
متن کاملApplications of the Kleisli and Eilenberg-Moore 2-adjunctions
In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...
متن کاملIntegral Geometry of Tensor Valuations
We prove a complete set of integral geometric formulas of Crofton type (involving integrations over affine Grassmannians) for the Minkowski tensors of convex bodies. Minkowski tensors are the natural tensor valued valuations generalizing the intrinsic volumes (or Minkowski functionals) of convex bodies. By Hadwiger’s general integral geometric theorem, the Crofton formulas yield also kinematic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004